
Cushioning components

Function	Туре	Version	Brief description	Area of application
Shock	Elastomer	absorber		
absorber	DYEF-Y1	Guilling	 Mechanical shock absorber with flexible rubber buffer Cushioning stroke cannot be adjusted No fixed stop Continuous mounting thread with internal hex 	Mini slide DGSL
	DYEF-Y1F	Guina	 Mechanical shock absorber with flexible rubber buffer Cushioning stroke can be adjusted With fixed stop Continuous mounting thread with internal hex 	 Mini slide DGSL Swivel module DSM-B
	Adjustabl	•		
	DYSR	a a a a a a a a a a a a a a a a a a a	 Hydraulic shock absorber with spring return Adjustable cushioning hardness 	-
	Self-adius	sting		
Self-adjusting YSR-C DYSC		Constant and a second s	 Hydraulic shock absorber with path-controlled flow control function Rapidly increasing cushioning force curve Short cushioning stroke Suitable for rotary drives Maintenance-free 	 Linear drive DGPL Linear drive DGC Linear unit SLE
	 Continuous mounting thread Hydraulic shock absorber with path-controlled flow control function Rapidly increasing cushioning force curve Short cushioning stroke Suitable for rotary drives Maintenance-free Metal end position at the housing Continuous mounting thread with internal hex 	 Swivel module DSM-B Swivel/linear unit DSL-B 		
	YSRW		 Continuous mounting thread with memarinex Hydraulic shock absorber with path-controlled flow control function Slowly increasing cushioning force curve Long cushioning stroke Suitable for low-vibration operation Short cycle times possible Maintenance-free Continuous mounting thread with spanner flat 	 Linear drive DGC Handling module HSP, HSW
	DYSW	C.S. Market	 Hydraulic shock absorber with path-controlled flow control function Slowly increasing cushioning force curve Long cushioning stroke Suitable for low-vibration operation Short cycle times possible Maintenance-free Metal end position at the housing Continuous mounting thread with internal hex 	 Mini slide DGSL Handling module HSW

Size	Stroke	Energy absorption per stroke	Position sensing	Free of copper, PTFE and silicone	→ Page/Internet
	[mm]	[J]		Shicone	
Elastomer absorber					
M4, M5, M6, M8, M10,	0.9, 1.0, 1.2, 1.3, 1.5	0.015 0.55			7
M12, M14, M16			_		
M4, M5, M6, M8, M10,	1.7, 2.8, 3.1, 3.4, 3.7,	0.005 1.2			10
M12, M14, M16, M22	4.2, 5, 4.8, 7		-		
Adjustable	1	1	1		
8, 12, 16, 20, 25, 32	8, 12, 20, 25, 40, 60	4 384			14
			_	_	
Self-adjusting	1	I	I	1	I
4, 5, 7, 8, 10, 12, 16, 20,	4, 5, 8, 10, 12, 20, 25,	0.6 380			18
4, <i>5</i> , <i>7</i> , 6 , 10, 12, 10, 20, 25, 32	40, 60	0.0 900		_	10
				■ Size	
			-	4 20	
				20	
4, 5, 7, 8, 12, 16, 20, 25	4, 5, 8, 12, 18, 25	0.6 25			22
				_	
			-	-	
					24
5, 7, 8, 10, 12, 16, 20	8, 10, 14, 17, 20, 26, 34	1.3 70			26
			-		
4, 5, 7, 8, 10, 12	6, 8, 10, 14, 17, 20	0.8 12			30
			-		

Function	Туре	Version	Brief description	Area of application
Stop	Self-adjust	ing		
element	YSRWJ	C MARK THE	 Cushioning with self-adjusting, progressive hydraulic shock absorber (YSRW) Slowly increasing cushioning force curve Adjustable cushioning stroke End-position sensing with proximity sensors SME/SMT-8 Precision end-position adjustment Stop elements YSRWJ can be used for a wide variety of applications in handling and assembly technology 	-
Hydraulic	Adjustable			
cushioning cylinder	DYHR	and the second s	 Hydraulic cushioning cylinder for constant, slow braking speeds across the entire stroke Braking speed can be precisely adjusted A built-in compression spring returns the piston rod to the initial position Suitable for slow feed speeds in the range up to 0.1 m/s 	-

Size	Stroke	Energy absorption per stroke	Position sensing	Free of copper, PTFE and silicone	→ Page/Internet					
	[mm]	[J]								
Self-adjusting										
5, 7, 8	8, 10, 14	1 3			34					
			_							
				-						
Adjustable										
16, 20, 25, 32	20, 25, 40, 50, 60	32 384			38					
			-	-						
1										

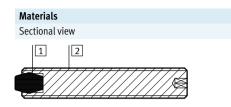
Shock absorbers DYEF- ... -Y1, without fixed stop

		DYEF]-[S] – [M8] – [Y1
Туре								
DYEF	Shock absorber							
l								
Version								
	Long							
S	Short							
1								
Size								
Design charac	teristic							
Y1	Internal hex							

Shock absorbers DYEF- ... -Y1, without fixed stop Technical data

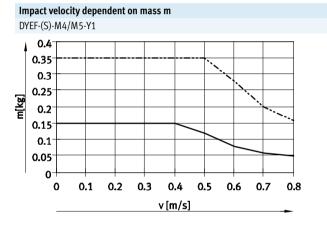
- **O** - Size M4 ... M16 - | -Stroke length 0.9 ... 1.5 mm

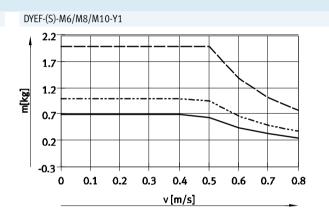
General technical data									
Size		M4	M5	M6	M8	M10	M12	M14	M16
Stroke	[mm]	0.9	1.5	1.5	1.3	1	1.2	1.2	1.3
Mode of operation		Elastomer cu	shioning witho	ut metal fixed s	stop			·	
Cushioning		Not adjustab	le						
Cushioning length [mm]		0.9	1.5	1.5	1.3	1	1.2	1.2	1.3
Type of mounting		Via lock nut							
Max. impact velocity	[m/s]	0.8							
Mounting position		Any							
Product weight	[g]	2.1	3.6	6	14	23	45.5	82.5	106
S	[g]	1.1	2	3	8.6	12	15	31	40
Ambient temperature	[°C]	0 +60						·	
Corrosion resistance class CRC ¹⁾		2							


Corrosion resistance class 2 according to Festo standard 940 070
 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Energy [J]								
Size	M4	M5	M6	M8	M10	M12	M14	M16
Max. energy absorption per stroke 0.015 0.05 0.08 0.12 0.25 0.35 0.45 0						0.55		
Mass range [kg]								
Mass range [kg]								
Size	M4	M5	M6	M8	M10	M12	M14	M16

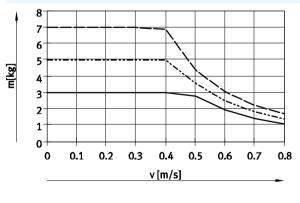
Shock absorbers DYEF- ... -Y1, without fixed stop


FESTO


Technical data

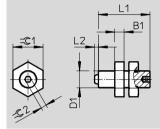
Shock absorber

SHOCK	nock absorber							
1	Buffer Nitrile rubber							
2	2 Housing High-alloy steel							
-	Seals	Nitrile rubber						
	Note on materials	Free of copper, PTFE and silicone						
		RoHS-compliant						



DYEF-(S-)M4-Y1
 DYEF-(S-)M5-Y1

DYEF-(S)-M12/M14/M16-Y1


 DYEF-(S-)M12-Y1
 DYEF-(S-)M14-Y1
 DYEF-(S-)M16-Y1

Shock absorbers DYEF- ... -Y1, without fixed stop Technical data

Dimensions Download CAD data → www.festo.com DYEF-M-... – Long version L1 L2 <u>B1</u> F

DYEF-S-M-... - Short version

Ы

Size	B1	D1	L1 DYEF-M DYEF-S-M		L2	=©1	=©2	Max. tightening torque ∹©1
					+0.3			[Nm]
M4	2.2	M4x0.5	22	12	0.9	7	1.3	0.5
M5	2.7	M5x0.5	26	14.5	1.8	8	1.5	0.8
M6	2.5	M6x0.5	30	15	1.8	8	2	1
M8	3	M8x1	38	23.5	2	10	2.5	2
M10	3.5	M10x1	41	21	1.8	13	3	3
M12	4	M12x1	54	20	2	15	4	5
M14	5	M14x1	72	28	2	17	4	8
M16	5	M16x1	75	31.5	2	19	5	20

Ordering	g data		
Size	Part No.	Туре	
DYEF-M	– Long version		
M4	1179810	DYEF-M4-Y1	
M5	1179818	DYEF-M5-Y1	
M6	1179831	DYEF-M6-Y1	
M8	1179834	DYEF-M8-Y1	
M10	1179837	DYEF-M10-Y1	
M12	1179840	DYEF-M12-Y1	
M14	1179863	DYEF-M14-Y1	
M16	1179879	DYEF-M16-Y1	
DYEF-S-N	N – Short version		
M4	1152500	DYEF-S-M4-Y1	
M5	1152507	DYEF-S-M5-Y1	
M6	1152524	DYEF-S-M6-Y1	
M8	1152536	DYEF-S-M8-Y1	
M10	1152959	DYEF-S-M10-Y1	
M12	1153004	DYEF-S-M12-Y1	
M14	1153017	DYEF-S-M14-Y1	
M16	1153023	DYEF-S-M16-Y1	

Shock absorbers DYEF- ... -Y1F, with fixed stop

		DYEF]-[M8	-	Y1] [F
Туре								
DYEF	Shock absorber							
Size								
					1			
Design charac	teristic							
Y1	Internal hex							
Stop								
F	With fixed stop							

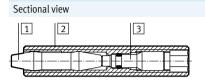
Shock absorbers DYEF- ... -Y1F, with fixed stop Technical data

- **Q** - Size M4 ... M22 - -Stroke length 1.7 ... 7 mm

General technical data										
Size		M4	M5	M6	M8	M10	M12	M14	M16	M22
Stroke	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Mode of operation	Elastomer c	ushioning wi	th metal fixed	d stop						
Cushioning		Adjustable								
Cushioning length	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Type of mounting		Via lock nut								
Max. impact velocity	[m/s]	0.8								
Mounting position		Any								
Product weight	[g]	1.6	2.9	5.1	11.9	19.7	39.6	77.3	104	200
Ambient temperature	[°C]	0 +60								
Corrosion resistance class CRC ¹⁾		2					1			

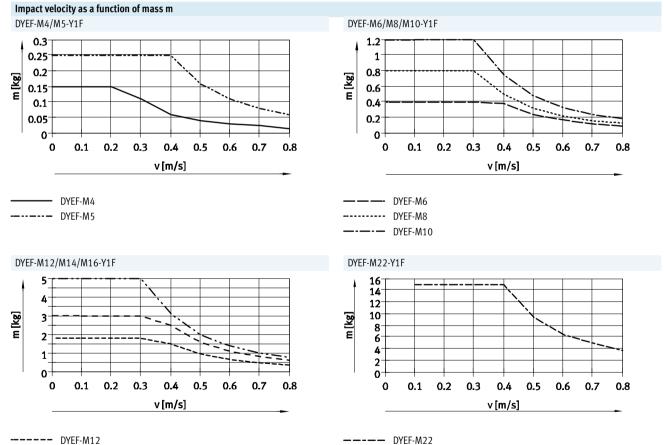
1) Corrosion resistance class 2 according to Festo standard 940 070 Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents.

Force [N]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Min. insertion force ¹⁾	15	30	40	60	70	100	150	180	500


1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly in the event of an extended external end position or a reduction in the cushioning stroke.

Energy [J]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Max. energy absorption per stroke	0.005	0.02	0.03	0.04	0.06	0.12	0.2	0.25	1.2
Mass range [kg]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Mass range up to	0.15	0.25	0.4	0.6	1.2	1.8	3	5	15

Shock absorbers DYEF- ... -Y1F, with fixed stop


Technical data

Materials

Shock absorber

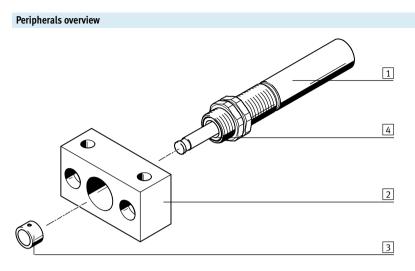
SHOCK	absorber	
1	Buffer	Nitrile rubber
2	Adjustable sleeve	High-alloy steel
3	Setting piece	High-alloy steel
-	Seals	Nitrile rubber
	Note on materials	Free of copper, PTFE and silicone
		RoHS-compliant

- ----- DYEF-M12
- **- - -** DYEF-M14

⁻⁻⁻⁻⁻ DYEF-M16

Shock absorbers DYEF- ... -Y1F, with fixed stop Technical data

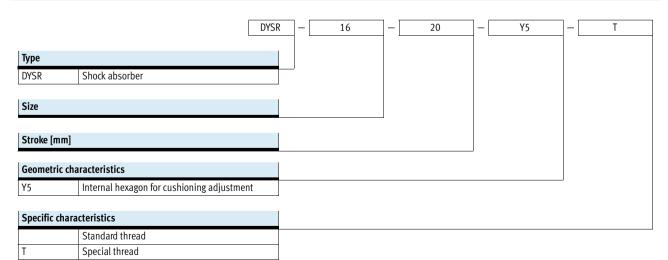
Dimensions Download CAD data → www.festo.com <u>B1</u> =**€**3 δ **€**1 L1 L2

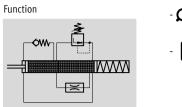

Size	B1	D1	L1	L2	=©1	=℃2	=©3	Max. tightening torque ∹©1
				+0.3				[Nm]
M4	2.2	M4x0.5	22	1.7	7	1.3	2.5	0.5
M5	2.7	M5x0.5	26	2.8	8	1.5	3	0.8
M6	2.5	M6x0.5	30	3.1	8	2	4	1
M8	3	M8x1	38	3.4	10	2.5	5	2
M10	3.5	M10x1	41	3.7	13	3	6	3
M12	4	M12x1	54	4.2	15	4	8	5
M14	5	M14x1	72	5	17	4	8	8
M16	5	M16x1	75	4.8	19	5	10	20
M22	5	M22x1.5	78	7	27	5	10	35

Ordering	data		
Size	Part No.	Туре	
M4	548370	DYEF-M4-Y1F ¹⁾	
M5	548371	DYEF-M5-Y1F	
M6	548372	DYEF-M6-Y1F	
M8	548373	DYEF-M8-Y1F	
M10	548374	DYEF-M10-Y1F	
M12	548375	DYEF-M12-Y1F	
M14	548376	DYEF-M14-Y1F	
M16	548377	DYEF-M16-Y1F	
M22	1113706	DYEF-M22-Y1F	

1) The scope of delivery for this size includes an Allen key.

Peripherals overview and type codes


FESTO


Access	ories		
	Туре	Brief description	→ Page/Internet
1	Shock absorber DYSR	Hydraulic shock absorber with adjustable cushioning characteristics	15
2	Mounting flange YSRF	Mounting option for shock absorber	42
3	Buffer YSRP	For protecting the piston rod	44
4	Wiper seal ¹⁾ ; hardened piston rod ²⁾	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-

As of size 12
 As of size 16

Type codes

Technical data

General technical data

	8	12	16	20	25	32		
[mm]	8	12	20	25	40	60		
	Hydraulic shock abs	sorber with spring re	turn					
	Single acting, push	Single acting, pushing						
Cushioning Adjustable, force-dependent, hard characteristic curve								
[mm]	8	12	20	25	40	60		
	Via lock nut							
[m/s]	0.1 3							
	Any							
[g]	60	105/120 ¹⁾	200/250 ¹⁾	355/425 ¹⁾	715	1,355		
[°C]	-10 +80							
(C ²⁾	1							
	[mm] [m/s] [g]	[mm] 8 Hydraulic shock ab: Single acting, push Adjustable, force-do Adjustable, force-do [mm] 8 Via lock nut Im/s) [m/s] 0.1 3 Any [g] [g] 60 [°C] -10 +80	Image Image [mm] 8 12 Hydraulic shock absorber with spring regime Single acting, pushing Adjustable, force-dependent, hard chara [mm] 8 12 Via lock nut Via lock nut [m/s] 0.1 3 Any [g] 60 105/120 ¹⁾ [°C] -10 +80	Image Image <th< td=""><td>Image Image <th< td=""><td>Image: Image: Image:</td></th<></td></th<>	Image Image <th< td=""><td>Image: Image: Image:</td></th<>	Image:		

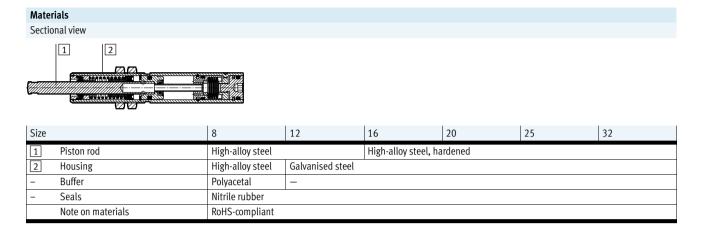
1) Applies to shock absorbers with special thread T 2)

Corrosion existance class 1 according to Festo standard 940 070 Components subject to low corrosion stress. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

Reset time [s]						
Size	8	12	16	20	25	32
Reset time ¹⁾	≰]0.2		≤ 0.3		≤ 0.4	≤ 0.6

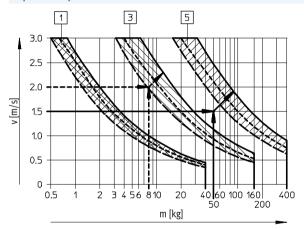
1) The specified technical data refers to ambient temperature. At -10 °C, the reset time can be up to 1 s for sizes 12, 16 and up to 3 s for sizes 8, 20, 25, 32

Force [N]						
Size	8	12	16	20	25	32
Min. insertion force ¹⁾	18	38	66	110	155	175
Max. stop force ²⁾ in the end positions	400	900	1,600	2,500	4,000	6,400
Min. resetting force ³⁾	1.8	4.5	5.4	9	12.5	18

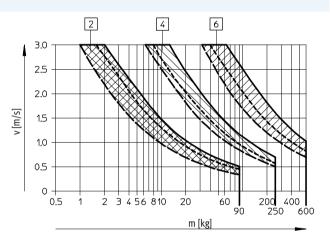

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly with an extended external end position

If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke

3) This is the maximum force that can act on the piston rod, allowing for full extension of the shock absorber (e.g. protruding bolt)

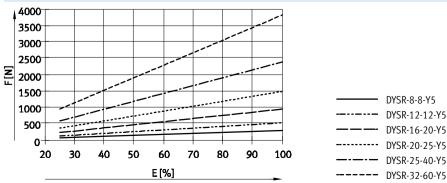

Energy [J]						
Size	8	12	16	20	25	32
Max. energy absorption per stroke	4	10.8	32	62.5	160	384
Max. energy absorption per hour	24,000	60,000	100,000	135,000	220,000	330,000
Max. residual energy	0.01	0.05	0.16	0.32	0.8	2

Technical data


Selection graph for shock absorbers with infinitely adjustable cushioning DYSR

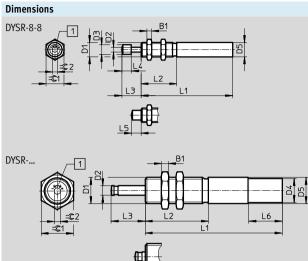
Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

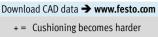
The arrows relate to the examples starting on page 48.



1	DYSR-8-8
2	DYSR-12-12
3	DYSR-16-20

4 DYSR-20-255 DYSR-25-406 DYSR-32-60


Shock absorber	Force A =	Force A =	Force A =
DYSR-8-8	0 N	100 N	200 N
DYSR-12-12	0 N	200 N	500 N
DYSR-16-20	0 N	500 N	800 N
DYSR-20-25	0 N	800 N	1,200 N
DYSR-25-40	0 N	1,200 N	2,000 N
DYSR-32-60	0 N	2,000 N	3,000 N



Technical data

1 Cushioning adjustment Buffer (included in the scope of delivery)

- = Cushioning becomes softer

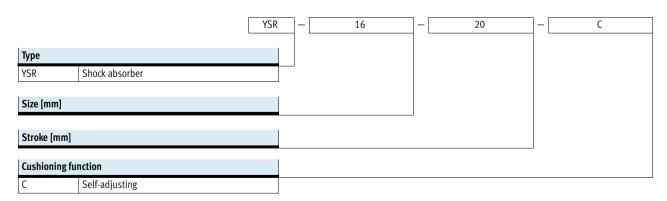
FESTO

1 Cushioning adjustment Buffer YSRP (not included in the scope of delivery)

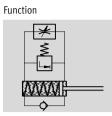
- + = Cushioning becomes harder
- Cushioning becomes softer

Туре	B1	D1	D2 Ø	D3 Ø	D4 Ø	D5 Ø	L1	L2
				±0.2	+0.15	+0.15/-0.1		±0.1
DYSR-8-8-Y5	4	M12x1	4	8	-	12	77±0.1	30
DYSR-12-12-Y5	r.	M15x1	6			15	97±0.1	36
DYSR-12-12-Y5-T	-)	M16x1	0	—	_	16	97±0.1	00
DYSR-16-20-Y5	6	M20x1.25	8	-	-	20	115±0.1	53
DYSR-16-20-Y5-T	0	M22x1.5	0		20	22	115±0.1	
DYSR-20-25-Y5	- 8	M24x1.25	10	-	-	24	138±0.1	60
DYSR-20-25-Y5-T	0	M26x1.5	10		24	26	130±0.1	60
DYSR-25-40-Y5	10	M30x1.5	12	-	28.8	30	178±0.1	80
DYSR-32-60-Y5	12	M37x1.5	15	-	34.8	37	230±0.15	108

Туре	L3	L4	L5	L6	=©1	=©2	Max. tightening torque ∹©1	
		±0.2		±0.2			[Nm]	
DYSR-8-8-Y5	16.2+0.6/-0.45	8	8+0.5/-0.35	-	15	4	5	
DYSR-12-12-Y5	19 4 0 25/ 0 2		64015101	-	19	5	20	
DYSR-12-12-Y5-T	- 18.4+0.35/-0.2	-	6.4+0.45/-0.4		19	5	20	
DYSR-16-20-Y5	28 5 6 7 6 6		8.5+0.45/-0.4	-	24	r	25	
DYSR-16-20-Y5-T	- 28.5+0.4/-0.3	_		28	27	5	35	
DYSR-20-25-Y5	25 (10 (-	30	r	(0	
DYSR-20-25-Y5-T	35.6+0.4/-0.3	-	10.6+0.45/-0.4	28	32	5	60	
DYSR-25-40-Y5	52.8+0.4/-0.3	-	12.8+0.45/-0.4	28	36	6	80	
DYSR-32-60-Y5	76+0.5/-0.4	-	16+0.5/-0.4	28	46	6	100	


Ordering d	ata	
Size	Part No.	Туре
8	1138641	DYSR-8-8-Y5
12	1138642	DYSR-12-12-Y5
	1138643	DYSR-12-12-Y5-T
16	1138644	DYSR-16-20-Y5
	1138645	DYSR-16-20-Y5-T
20	1138646	DYSR-20-25-Y5
	1138647	DYSR-20-25-Y5-T
25	1138648	DYSR-25-40-Y5
32	1138649	DYSR-32-60-Y5

Peripherals overview and type codes



Acces	ccessories									
	Туре	Brief description	→ Page/Internet							
1	Shock absorber YSR-C	Hydraulic shock absorber with rapidly increasing cushioning force curve	19							
2	Reducing sleeve DAYH	To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve	45							
3	Mounting flange YSRF	Mounting option for shock absorber	42							
4	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	43							
5	Stop limiters YSRA	Stroke limiter for shock absorber	44							
-	Inductive proximity sensor SIEN	For mounting flange YSRF-S	45							

Type codes

Technical data

Size 4 ... 32 mm

4 ... 60 mm

General technical data

General technical data													
Size		4	5	7	8	10	12	16	20	25	32		
Stroke	[mm]	4	5	5	8	10	12	20	25	40	60		
Mode of operation		Hydrauli	Hydraulic shock absorbers with return spring										
		Single a	ngle acting, pushing										
Cushioning Self-adjustable													
Cushioning length	[mm]	4	5	5	8	10	12	20	25	40	60		
Type of mounting		With loc	knut			·			÷				
Impact velocity	[m/s]	0.05 2	2	0.05 3	3								
Mounting position		Any											
Product weight	[g]	5	8	16	32	51	74	185	318	600	1220		
Ambient temperature	[°C]	-10 +	-80			·			÷				
Corrosion resistance class	2												

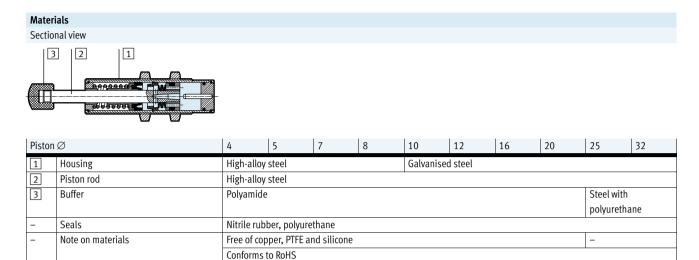
1) Corrosion resistance class 2 to Festo standard 940 070

Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

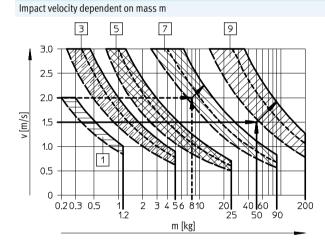
Reset time [s]										
Size	4	5	7	8	10	12	16	20	25	32
Reset time ¹⁾	≤ 0.2						≤ 0.3		≤ 0.4	≤ 0.5

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

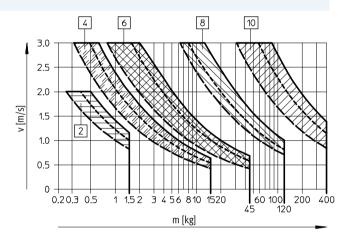
Forces [N]										
Size	4	5	7	8	10	12	16	20	25	32
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35	60	100	140	160
Max. stop force ²⁾ in end positions	100	200	300	500	700	1,000	2,000	3,000	4,000	6,000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5	6	10	14	20


1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position

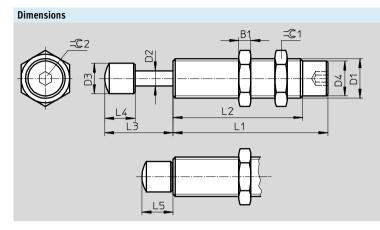
2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke


3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

Energies [J]										
Size	4	5	7	8	10	12	16	20	25	32
Max. energy absorption per stroke	0.6	1	2	3	6	10	30	60	160	380
Max. energy absorption per hour	5,600	8,000	12,000	18,000	26,000	36,000	64,000	92,000	150,000	220,000
Max. residual energy	0.006	0.01	·	0.02	0.03	0.05	0.16	0.32	0.8	2
Mass range [kg]										
Size	4	5	7	8	10	12	16	20	25	32
Permissible mass range up to	1.2	1.5	5	15	25	45	90	120	200	400


Technical data

Selection graph for self-adjusting shock absorbers YSR-C


Three force curves are shown for each shock absorber. Interim values must be calculated by averaging. The arrows relate to the examples starting on page \rightarrow 49.

1 YSR-4-4-C	5 YSR-12-12-C
2 YSR-5-5-C	6 YSR-16-20-C
2 YSR-7-5-C	7 YSR-20-25-C
3 YSR-8-8-C	8 YSR-25-40-C
4 YSR-10-10-C	10 YSR-32-60-C

Shock absorber	Force A =	Force A =	Force A =	
YSR-4-4-C	0 N	-	50 N	
YSR-5-5-C	0 N	50 N	100 N	
YSR-7-5-C	0 N	100 N	200 N	
YSR-8-8-C	O N	100 N	200 N	
YSR-10-10-C	0 N	150 N	300 N	
YSR-12-12-C	0 N	200 N	500 N	
YSR-16-20-C	0 N	500 N	800 N	
YSR-20-25-C	0 N	800 N	1,200 N	
YSR-25-40-C	0 N	1,200 N	2,500 N	
YSR-32-60-C	0 N	2,000 N	4,000 N	

Technical data

Download CAD data → www.festo.com

FESTO

- 🗍 - Note

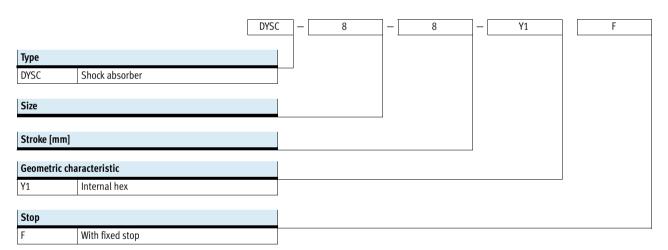
To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1
[mm]						±0.1
4	2.5	M6x0.5	2	3.5 ±0.05	5.3 ±0.05	28.5
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	29
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	34
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	46
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	55
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	64
16	6	M22x1.5	8	16 ±0.2	19.6 ±0.1	86
20	8	M26x1.5	10	20 ±0.2	23.8 ±0.1	104
25	10	M30x1.5	12	25 ±0.2	27.8 ±0.1	152
32	12	M37x1.5	15	32 ±0.2	34.8 ±0.1	205

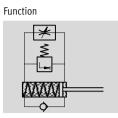

Size	L2	L3	L4	L5	=©1	=©2	Max. tightening torque ≍© 1 [Nm]
[mm]	±0.3						
4	18.5	8.3 +0.6/-0.3	4 ±0.1	4.3 +0.35/-0.25	8	2	1
5	19	10.8 +0.6/-0.3	5.5 ±0.1	5.8 +0.55/-0.25	10		2
7	23	12.3 +0.7/-0.35	7 ±0.2	7.3 +0.55/-0.25	13		3
8	33	16.3 +0.7/-0.35	8 ±0.2	8.3 +0.55/-0.25	15		5
10	42	20.5 +0.7/-0.35	10 ±0.2	10.5 +0.55/-0.25	17		8
12	51	24.5 +0.7/-0.35	12 ±0.2	12.5 +0.55/-0.25	19	-	20
16	69	36.5 +0.7/-0.35	16 ±0.2	16.5 +0.55/-0.25	27		35
20	87	45.5 +0.7/-0.35	20 ±0.2	20.5 +0.55/-0.25	32		60
25	125	61.5 +1.25/-0.75	20.5 ±0.4	21.5 +0.95/-0.55	36		80
32	179	87 +1.25/-0.75	26 ±0.4	27 +0.95/-0.55	46		100

Ordering	Ordering data					
	1	-				
Size	Part No.	Туре				
[mm]						
4	540060	YSR-4-4-C ¹⁾				
5	158981	YSR-5-5-C ¹⁾				
7	160272	YSR-7-5-C ¹⁾				
8	34571	YSR-8-8-C ¹⁾				
10	191199	YSR-10-10-C ¹⁾				
12	34572	YSR-12-12-C ¹⁾				
16	34573	YSR-16-20-C ¹⁾				
20	34574	YSR-20-25-C ¹⁾				
25	160273	YSR-25-40-C				
32	160274	YSR-32-60-C				

1) Free of copper, PTFE and silicone


Peripherals overview and type codes

FESTO



Access	Accessories							
	Туре	Brief description	→ Page/Internet					
1	Shock absorber	Hydraulic shock absorber with rapidly increasing cushioning force curve	23					
	DYSC							
2	Reducing sleeve	To improve the cushioning performance in the case of underload, the built-in shock	45					
	DAYH	absorber can be replaced by the next smallest shock absorber with the help of the						
		reducing sleeve						

Type codes

Technical data

 Size

 4 ... 25

 Stroke length

 4 ... 25 mm

General technical data

General technical data									
Size		4	5	7	8	12	16	20	25
Stroke	[mm]	4	5	5	8	12	18	18	25
Mode of operation		Hydraulic	shock absorbe	r with spring ret	urn				
	Single act	Single acting, pushing							
Cushioning Self-adjusting, hard				acteristic curve					
Cushioning length	[mm]	4	5	5	8	12	18	16	25
Type of mounting		With lock	nut						
Impact velocity	[m/s]	0.05 2		0.05 3					
Mounting position		Any							
Product weight	[g]	5	9	17	36	81	210	370	575
Ambient temperature	[°C]	-10 +8	0	÷			÷		
Corrosion resistance class CRC ¹⁾ 2									

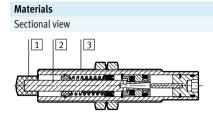
1) Corrosion resistance class 2 to Festo standard 940 070

Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Reset time [s]								
Size	4	5	7	8	12	16	20	25
Reset time ¹⁾	≤ 0.2					≤ 0.3		

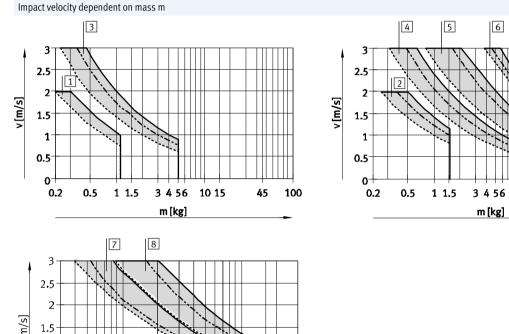
1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

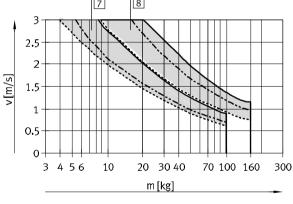
Forces [N]								
Size	4	5	7	8	12	16	20	25
Min. insertion force ¹⁾	6.5	7.5	10	18	35	60	100	140
Max. stop force ²⁾ in end positions	100	200	300	500	1,000	2,000	3,000	4,000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	5	6	10	14


1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end position

2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke

3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)


Energies [J]								
Size	4	5	7	8	12	16	20	25
Max. energy absorption per stroke	0.6	1	2	3	10	25	38	100
Max. energy absorption per hour	5,600	8,000	12,000	18,000	36,000	50,000	80,000	140,000
Max. residual energy	0.006	0.01		0.02	0.05	0.16	0.32	0.8
Mass range [kg]								
Size	4	5	7	8	12	16	20	25
Mass range up to	1.2	1.5	5	15	45	70	100	160


Technical data

Size		4	5	7	8	12	16	20	25
1	Buffer	POM							
2	Piston rod	High-alloy steel							
3	Housing	High-alloy steel				Galvanised steel			
-	Seals	NBR							
	Note on materials	Free of copper and PTFE							
		Conforms to RoHS							

Selection graph for self-adjusting shock absorbers DYSC

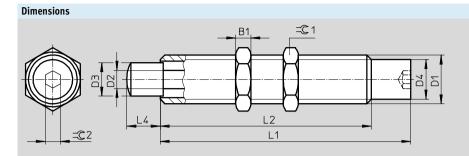
Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

 1
 DYSC-4-4-Y1F

 2
 DYSC-5-5-Y1F

 3
 DYSC-7-5-Y1F

4	DYSC-8-8-Y1F
5	DYSC-12-12-Y1F
6	DYSC-16-18-Y1F


7 DYSC-20-18-Y1F 8 DYSC-25-25-Y1F

10 15

45 70 100

Shock absorber	Force A =	Force A =	Force A =
DYSC-4-4-Y1F	0 N	-	50 N
DYSC-5-5-Y1F	0 N	50 N	100 N
DYSC-7-5-Y1F	0 N	100 N	200 N
DYSC-8-8-Y1F	0 N	100 N	200 N
DYSC-12-12-Y1F	0 N	200 N	500 N
DYSC-16-18-Y1F	0 N	500 N	800 N
DYSC-20-18-Y1F	0 N	800 N	1,200 N
DYSC-25-25-Y1F	0 N	1,200 N	2,500 N

Technical data

Shock absorber in end position

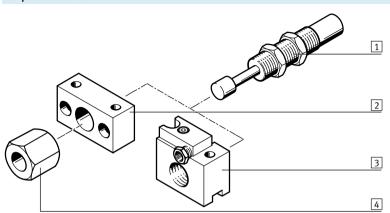
L3

Download CAD data → www.festo.com

- 🗍 - Note

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1	L2
[mm]						±0.1	+0.3/-0.2
4	2.5	M6x0.5	2	3.5 ±0.05	5.4 ±0.05	35.5	25.5
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	38.6	28.6
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	45.15	34.15
8	4	M12x1	4	7 ±0.1	10.4 ±0.1	59.05	46.05
12	5	M16x1	6	11 ±0.1	14.5 ±0.1	82.5	69.5
16	6	M22x1.5	8	15 ±0.1	19,6 ±0.1	110	93
20	8	M26x1.5	10	18.8 ±0.1	23.8 ±0.1	122	105
25	10	M30x1.5	12	22.8 ±0.1	27.8 ±0.1	165	137

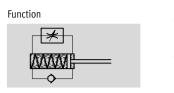

Size	L3 ¹⁾	L4	=©1	=©2	Max. tightening torque =©1
[mm]					[Nm]
4	4	4 +0.30/-0.24	8	2	1
5	5.5	5 +0.32/-0.28	10	2.5	2
7	7	5 +0.37/-0.28	13	3	3
8	8	8 +0.42/-0.33	15	4	5
12	12	12 +0.50/-0.35	19	5	20
16	17	18 +0.50/-0.35	27	5	35
20	20	18 +0.50/-0.35	32	6	60
25	22	25 +0.50/-0.35	36	8	80

1) Buffer length

Ordering da	ta		
Size	Part No.	Туре	
[mm]			
4	570506	DYSC-4-4-Y1F	
5	548011	DYSC-5-5-Y1F	
7	548012	DYSC-7-5-Y1F	
8	548013	DYSC-8-8-Y1F	
12	548014	DYSC-12-12-Y1F	
16	553593	DYSC-16-18-Y1F	
20	2479149	DYSC-20-18-Y1F	
25	2480234	DYSC-25-25-Y1F	

Shock absorbers YSRW Peripherals overview and type codes

Peripherals overview



Acces	sories		
	Туре	Brief description	→ Page/Internet
1	Shock absorber YSRW	Hydraulic shock absorber with progressive cushioning characteristic	27
2	Mounting flange YSRF	Mounting option for shock absorber	42
3	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	43
4	Stop limiters YSRA	Stroke limiter for shock absorber	44
-	Inductive proximity sensor SIEN	For mounting flange YSRF-S	45

Type codes

		YSRW]-[10	_	20
Туре						
YSRW	Shock absorber		J			
Size						
<u> </u>						
Stroke [mm]						

Technical data

8 ... 34 mm

General technical data

General technical data								
Size		5	7	8	10	12	16	20
Stroke	[mm]	8	10	14	17	20	26	34
Mode of operation		Hydraulic sh	ock absorbers v	vith return spring				
		Single acting	g, pushing					
Cushioning		Self-adjusta	ble					
Cushioning length	[mm]	8	10	14	17	20	26	34
Type of mounting		With locknut						
Impact velocity	[m/s]	0.1 2	0.1 3					
Mounting position		Any						
Product weight	[g]	8	18	34	54	78	190	330
Ambient temperature	[°C]	-10 +80			·			
Corrosion resistance class	CRC ¹⁾	2						

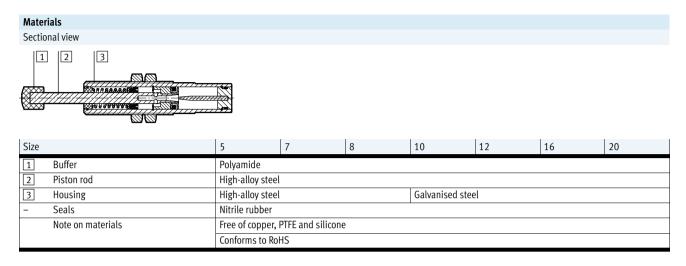
1) Corrosion resistance class 2 to Festo standard 940 070

Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

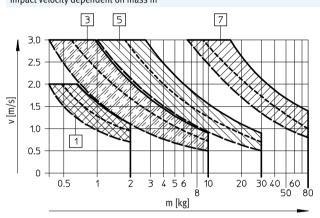
Reset time [s]							
Size	5	7	8	10	12	16	20
Reset time ¹⁾	≤ 0.2				≤ 0.3		

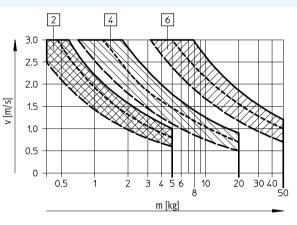
1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]							
Size	5	7	8	10	12	16	20
Min. insertion force ¹⁾	7.5	10	18	25	35	60	100
Max. stop force ²⁾ in end positions	200	300	500	700	1,000	2,000	3,000
Min. resetting force ³⁾	0.9	1.2	2.5	3.5	5	6	10


1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position

2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke


3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

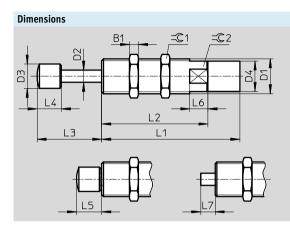

Energies [J]							
Size	5	7	8	10	12	16	20
Max. energy absorption per stroke	1.3	2.5	4	8	12	35	70
Max. energy absorption per hour	10,000	15,000	21,000	30,000	41,000	68,000	100,000
Max. residual energy	0.01		0.02	0.03	0.05	0.16	0.32
Mass range [kg]							
Size	5	7	8	10	12	16	20
Permissible mass range up to	2	5	10	20	30	50	80

Technical data

Selection graph for self-adjusting shock absorbers with progressive characteristics YSRW Impact velocity dependent on mass m

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

1 YSRW-5-8 2 YSRW-7-10 3 YSRW-8-14


4 YSRW-10-17

5	YSRW-12-20

6 YSRW-16-26 7 YSRW-20-34

Shock absorber	Force A =	Force A =	Force A =
YSRW-5-8	0 N	50 N	100 N
YSRW-7-10	0 N	75 N	150 N
YSRW-8-14	0 N	100 N	200 N
YSRW-10-17	0 N	150 N	300 N
YSRW-12-20	0 N	200 N	400 N
YSRW-16-26	0 N	500 N	800 N
YSRW-20-34	0 N	800 N	1,200 N

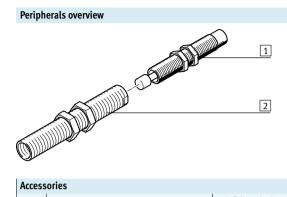
Technical data

FESTO

Download CAD data → www.festo.com

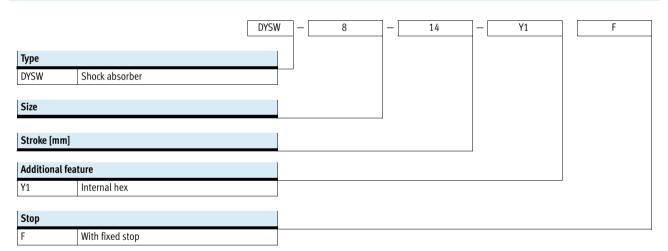
- 🗍 - Note

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

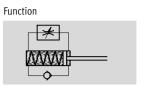

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1	L2	L3
[mm]						±0.1	±0.3	
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	33.5	22.5	13.8 +0.6/-0.25
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	41	30	17.3 +0.7/-0.25
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	53	40	22.3 +0.7/-0.25
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	62	49	27.5 +0.7/-0.25
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	72.5	59.5	32.5 +0.7/-0.25
16	6	M22x1.5	8	16 ±0.2	20 ±0.1	91	70	42.5 +0.7/-0.35
20	8	M26x1.5	10	18.8 ±0.2	24 ±0.1	112	91	54.5 +0.7/-0.35

Size	L4	L5	L6	L7	=©1	= ©2	Max. tightening torque ∹©1
[mm]			+0.5				[Nm]
5	5.5 ±0.1	5.8 +0.35/-0.25	5	3.5 ±0.25	10	7	2
7	7 ±0.2	7.3 +0.35/-0.25	6	4.3 ±0.25	13	9	3
8	8 ±0.2	8.3 +0.4/-0.25	8	5.3 +0.3/-0.25	15	11	5
10	10 ±0.2	10.5 +0.4/-0.25	10	6.5 +0.3/-0.25	17	13	8
12	12 ±0.2	12.5 +0.4/-0.25	12	7.5 +0.3/-0.25	19	15	20
16	16 ±0.2	16.5 +0.4/-0.25	12	9.5 +0.3/-0.25	27	20	35
20	20 ±0.2	20.5 +0.4/-0.25	12	11.5 +0.3/-0.25	32	24	60

Ordering d	lata	
Size	Part No.	Туре
[mm]		,,
liiiii		
5	191192	YSRW-5-8
7	191193	YSRW-7-10
8	191194	YSRW-8-14
10	191195	YSRW-10-17
12	191196	YSRW-12-20
16	191197	YSRW-16-26
20	191198	YSRW-20-34


Peripherals overview and type codes

FESTO



Access	Accessories						
	Туре	Brief description	→ Page/Internet				
1	Shock absorber	Hydraulic shock absorber with rapidly increasing cushioning force curve	31				
	DYSW						
2	Reducing sleeve	To improve the cushioning performance in the case of underload, the built-in shock	45				
	DAYH	absorber can be replaced by the next smallest shock absorber with the help of the					
		reducing sleeve					

Type codes

Technical data

FESTO

General technical data	eneral technical data								
Size		4	5	7	8	10	12		
Stroke	[mm]	6	8	10	14	17	20		
Mode of operation		Hydraulic shock ab	sorber with spring re	eturn					
		Single acting, push	ing						
Cushioning		Self-adjusting, soft	Self-adjusting, soft characteristic curve						
Cushioning length	[mm]	6	8	10	14	17	20		
Type of mounting		With lock nut			-				
Impact velocity	[m/s]	0.1 2		0.1 3					
Assembly position		Any		·					
Product weight	[g]	6	11	21	42	67	91		
Ambient temperature	[°C]	-10 +80	-10 +80						

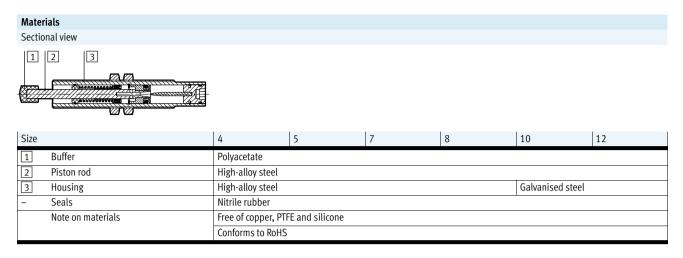
Reset time [S]						
Size	4	5	7	8	10	12
Reset time ¹⁾	≤ 0.2					≤ 0.3

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

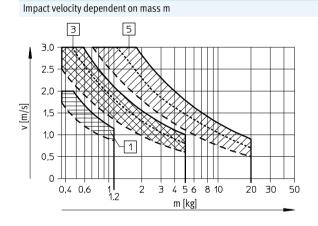
Forces [N]						
Size	4	5	7	8	10	12
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35
Max. stop force ²⁾ in end positions	100	200	300	500	700	1,000
(housing)						
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end position

2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke

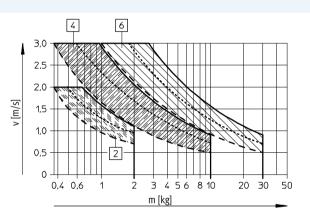

3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

Energies [J]							
Size	4	5	7	8	10	12	
Max. energy absorption per stroke	0.8	1.3	2.5	4	8	12	
Max. energy absorption per hour	7,000	10,000	15,000	21,000	30,000	41,000	
Max. residual energy	0.006	0.01	0.01	0.02	0.03	0.05	


Mass range [kg]

Size 4 5 7 8 10 12 Mass range up to 1.2 2 5 10 20 30							
Mass range up to 1.2 2 5 10 20 30	Size	4	5	7	8	10	12
	Mass range up to	1.2	2	5	10		30

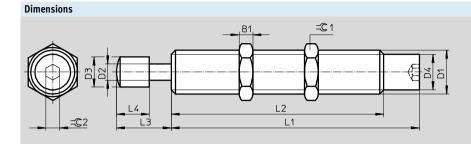
Technical data



Selection graph for self-adjusting shock absorbers with progressive characteristics DYSW

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

1	DYSW-4-6-Y1F
2	DYSW-5-8-Y1F
3	DYSW-7-10-Y1F



4	DYSW-8-14-Y1F
5	DYSW-10-17-Y1F

6 DYSW-12-20-Y1F

Shock absorber	Force A =	Force A =	Force A =
DYSW-4-6-Y1F	0 N	-	50 N
DYSW-5-8-Y1F	0 N	50 N	100 N
DYSW-7-10-Y1F	0 N	75 N	150 N
DYSW-8-14-Y1F	0 N	100 N	200 N
DYSW-10-17-Y1F	0 N	150 N	300 N
DYSW-12-20-Y1F	0 N	200 N	400 N

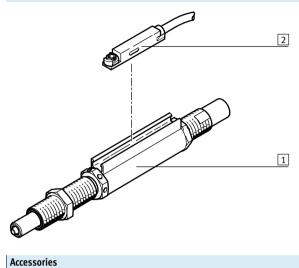
Technical data

Shock absorber in end position

Download CAD data → www.festo.com

- 🗍 - Note

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

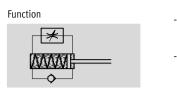

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1
[mm]						+0.1
4	2.5	M6x0.5	2	3.5±0.05	5.35±0.05	35.5
5	3	M8x1	2.5	4.7±0.05	6.7±0.05	43.1
7	3.5	M10x1	3	6±0.1	8.6±0.05	52.05
8	4	M12x1	4	7±0.1	10.4±0.1	66.05
10	5	M14x1	5	9±0.1	12.4±0.1	77.55
12	5	M16x1	6	11±0.1	14.4±0.1	90.75

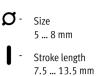
Size [mm]	L2 +0.3 -0.2	L3	L4	∹G1	=©2	Max. tightening torque ∹©1 [Nm]
4	25.5	6+0.30/-0.24	4±0.05	8	2	1
5	33.1	8+0.32/-0.28	5.5±0.1	10	2.5	2
7	41.05	10+0.37/-0.28	7±0.2	13	3	3
8	53.05	14+0.37/-0.28	8±0.2	15	4	5
10	64.55	17+0.37/-0.28	10±0.2	17	4	8
12	77.75	20+0.45/-0.30	12±0.2	19	5	20

Ordering data							
Size	Part No.	Туре					
[mm]							
4	548070	DYSW-4-6-Y1F					
5	548071	DYSW-5-8-Y1F					
7	548072	DYSW-7-10-Y1F					
8	548073	DYSW-8-14-Y1F					
10	548074	DYSW-10-17-Y1F					
12	548075	DYSW-12-20-Y1F					

Stop elements YSRWJ Peripherals overview and type codes

Peripherals overview


Accessories				
	Туре	Brief description	→ Page/Internet	
1	Stop element	Hydraulic shock absorber with progressive cushioning characteristic.	35	
	YSRWJ	The cushioning length is adjustable		
2	Proximity switches	Sensing option for end positions	45	
	SME-/SMT-8			


Type codes

		YSRWJ	 7	 10]-[А
Туре						
YSRWJ	Shock absorber					
Size						
Stroke [mm]						
Position sens	ing					
А	Position sensing					

Stop elements YSRWJ

Technical data

General technical data Size 5 7 8 Stroke [mm] 8 10 14 Mode of operation A piston rod in front of the shock absorber transmits the force to the shock absorber. This serves as the end stop and actuates the proximity sensor via a magnet mounted on it Single acting, pushing Cushioning Self-adjustable Cushioning length [mm] 8 10 14 Type of mounting With locknut Position sensing Via proximity sensor 0.05 ... 2 Impact velocity [m/s] 0.05 ... 3 Repetition accuracy [mm] 0.02 Mounting position Any Product weight 75 110 [g] 45 Ambient temperature [°C] 0 ... +60 Corrosion resistance class CRC¹⁾ 2

1) Corrosion resistance class 2 to Festo standard 940 070 Components subject to moderate corrosion stress. Extern

Components subject to moderate corrosion stress. Externally visible parts with primarily decorative surface requirements which are in direct contact with a normal industrial environment or media such as coolants or lubricating agents

Reset time [s]

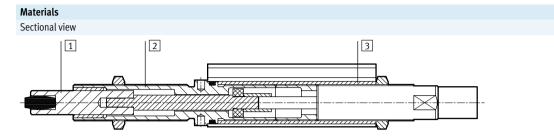
Size	5	7	8
Reset time ¹⁾	≤ 0.2		

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At 0 °C, the reset time may be up to 1 second

Forces [N]

Size	5	7	8	
Min. insertion force ¹⁾	5	18	80	
Max. stop force ²⁾ in end positions	200	300	500	
Min. resetting force ³⁾	1.5	2	3.5	

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position

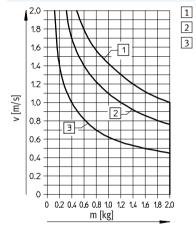

2) Impact force may not exceed the maximum specified value

3) This is maximum force that can be exerted on the piston rod so that the shock absorber advances fully

Energies [J]				
Size	5	7	8	
Max. energy absorption per stroke	1	2	3	
Max. energy absorption per hour	10,000	15,000	21,000	
Max. residual energy 0.01			0.02	

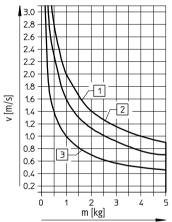
Mass range [kg]				
Size	5	7	8	
Permissible mass range up to	2	5	10	

Stop elements YSRWJ Technical data



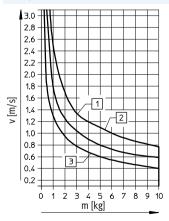
Stop e	Stop element				
1	Stop bolt	Steel, stainless and reinforced			
2	Distance sleeve	Galvanised steel			
3	Threaded barrel	Brass, nickel-plated			
-	Note on materials	Free of copper, PTFE and silicone			
		Conforms to RoHS			

Selection graphs for limit stops with shock absorber YSRWJ


Impact velocity dependent on mass m

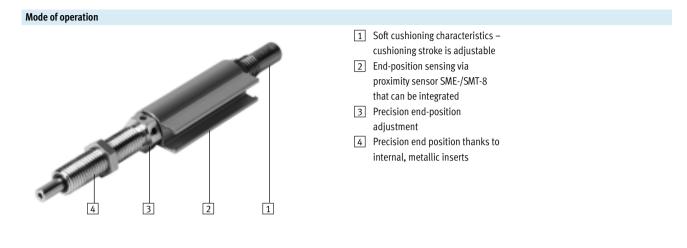
YSRWJ-5-8-A

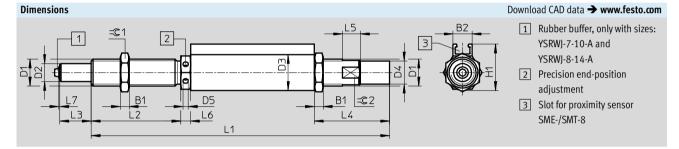
Without additional force With additional force A = 50 N 3 With additional force A = 100 N


YSRWJ-7-10-A

1 Without additional force

- 2 With additional force A = 75 N
- 3 With additional force A = 150 N

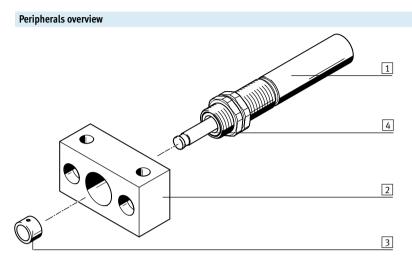

YSRWJ-8-14-A



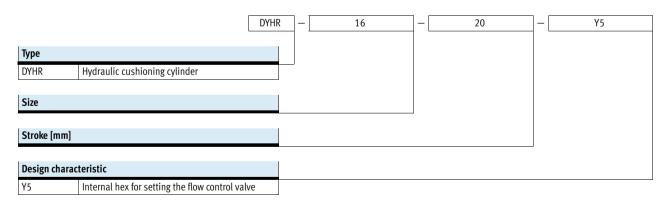
Without additional force 1

- With additional force A = 100 N 2
- 3 With additional force A = 150 N

Stop elements YSRWJ Technical data



Size	B1	B2	D1	D2	D3	D4	D5	H1	L1
[mm]		+0.4			+0.1		+0.1	+0.3	+0.3/-0.1
5	3	8.1	M8x1	4	12	6.7 ±0.05	2	16.5	97.4
7	3.5	8.5	M10x1	6	14	8.6 ±0.05	2.4	18.3	144.8
8	4	8.5	M12x1	8	16	10.4 ±0.1	2.4	20.75	133.3
Size	L2	L3	L4	L5	L6	L7	=©1	=©2	Max. tightening
									torque =©1
[mm]	+0.4		+0.45/-0.1	+0.5	+0.1/-0.55	+0.3			[Nm]
5	32.5	8 +0.7/-0.55	21.6	5	4.4	0.5	10	7	2
7	40	10 +0.8/-0.55	21.1	6	4	0.5	13	9	3
8	40	14 +0.8/-0.55	33.6	8	4.4	0.5	15	11	5


Ordering	data	
Size	Part No.	Туре
[mm]		
5	192968	YSRWJ-5-8-A
7	192967	YSRWJ-7-10-A
8	192966	YSRWJ-8-14-A

Hydraulic cushioning cylinders DYHR Peripherals overview and type codes

Acces	sories		
	Туре	Brief description	→ Page/Internet
1	Hydraulic cushioning cylinder DYHR	Hydraulic cushioning cylinder with spring return for slow feed speeds	39
2	Mounting flange YSRF	Mounting option for hydraulic cushioning cylinder	42
3	Buffer YSRP	For protecting the piston rod	44
4	Wiper seal; hardened piston rod	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-

Type codes

Hydraulic cushioning cylinders DYHR Technical data

Function

FESTO

General technical data

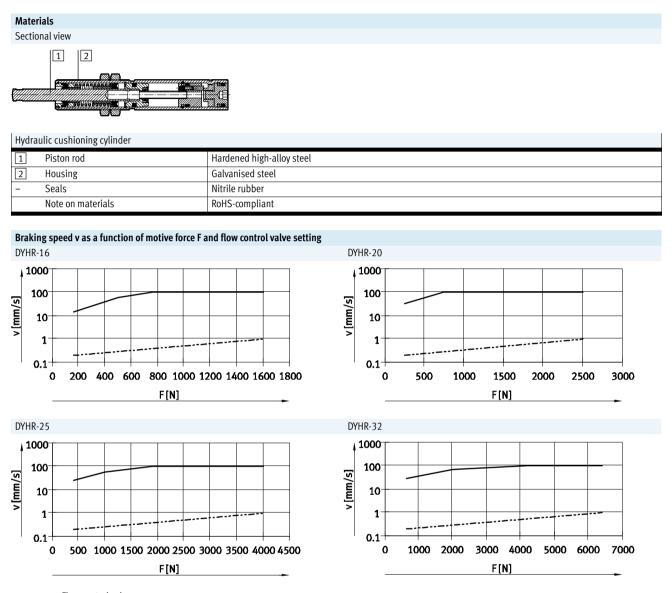
General technical data									
Size		16		20		25	32		
Stroke	[mm]	20	40	25	50	40	60		
Mode of operation		Hydraulic cushioning cylinder with spring return							
	Single-acting	Single-acting, pushing							
Braking speed		Adjustable							
Type of mounting		Via lock nut							
Max. impact velocity	[m/s]	0.3							
Mounting position		Any							
Feed speed	[mm/s]	0.2 100							
Product weight	[g]	190	255	360	440	720	1,380		
Ambient temperature	[°C]	0 +80							
Corrosion resistance class CRC ¹⁾	1								

1) Corrosion resistance class 1 according to Festo standard 940 070

Components subject to low corrosion stress. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

Reset times [s]				
Size	16	20	25	32
Short stroke ¹⁾	≤ 0.4	≤ 0.5	≤ 0.8	≤ 1.2
Long stroke ¹⁾	≤ 0.8	≤ 1	-	-

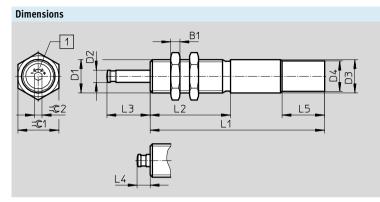
1) Increased reset times must be expected at low temperatures (0 °C). Up to 5 s with sizes 12 and 16 and up to 12 s with sizes 25 and 32.


Forces [N]

Size	16	20	25	32
Min. feed force ¹⁾	160	250	400	640
Max. feed force ²⁾	1,600	2,500	4,000	6,400
Resetting force ³⁾	5.4	9	12.5	18

Min. required force for constant braking speed with repetition accuracy
 Corresponds to max. force in the end position
 With piston rod advanced

Energies [J]							
Size		16		20		25	32
Stroke	[mm]	20	40	25	50	40	60
Max. energy absorption per stroke		32	64	62.5	125	160	384
Max. energy absorption per hour	100,000	150,000	135,000	200,000	220,000	330,000	
Max. residual energy in the end posit	0.16		0.32		0.8	2	


Hydraulic cushioning cylinders DYHR Technical data

Flow control valve open

-----Flow control valve closed

Hydraulic cushioning cylinders DYHR Technical data

Download CAD data → www.festo.com

FESTO

- + = Braking speed becomes harder
- = Braking speed becomes softer

1 Speed control

36

46

6

6

Size	Stroke	B1	D1	D2	D3	D4	L1
				Ø	Ø	Ø	
	[mm]				+0.15/-0.1	+0.15	
16	20	6	M20x1.25	8	20	_	115±0.1
	40	0	WI20X1.2 J	0	20	_	150 ± 0.1
20	25	8	M24x1.25	10	24		138±0.1
1	50	0	WI24X1.25	10	24	-	181±0.1
25	40	10	M30x1.5	12	30	28.8	178±0.1
32	60	12	M37x1.5	15	37	34.8	230±0.15
Size	Stroke	L2	L3	L4	L5	=©1	=©2
	[mm]	±0.1			±0.2		
16	20	53	28.5+0.4/-0.3	8.5+0.45/-0.4		24	5
	40		48.5+0.4/-0.3	0.0+0.45/-0.4	_	24	,
20	25	60	35.6+0.4/-0.3	10.6+0.45/-0.4		30	5
	50	00	60604102	10.0+0.45/-0.4	-	50	5

60.6+0.4/-0.3

52.8+0.4/-0.3

76+0.5/-0.4

80

108

Ordering d	ata		
Size	Stroke [mm]	Part No.	Туре
16	20	1155690	DYHR-16-20-Y5
	40	1155691	DYHR-16-40-Y5
20	25	1155692	DYHR-20-25-Y5
	50	1155693	DYHR-20-50-Y5
25	40	1155694	DYHR-25-40-Y5
32	60	1155696	DYHR-32-60-Y5

12.8+0.45/-0.4

16+0.5/-0.4

28

28

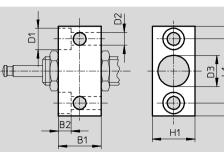
50

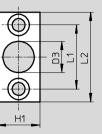
40

60

25

32


Accessories for cushioning components


Technical data

Mounting flange YSRF/YSRF-C

Material: Steel

Possible combinations						
Cushioning components	DYSR		YSR-C	YSRW	YDR	
Mounting flange	Y5	Y5-T				
YSRF						
YSRF-8	-	-	■ 1)	∎1)	-	
YSRF-12		-	-	-	-	
YSRF-16		-	-	-		
YSRF-20		-	-	-		
YSRF-25		-		-		
YSRF-32		-		-		
YSRF-C						
YSRF-8-C		-			-	
YSRF-12-C	-				-	
YSRF-16-C	-				-	
YSRF-20-C	-				-	

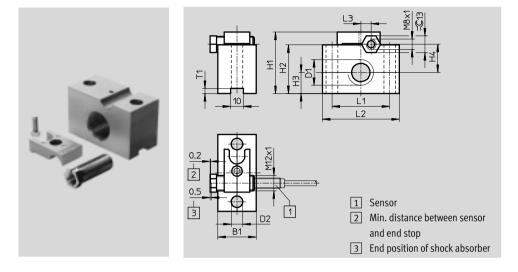
1) For shock absorber size \varnothing 7

Dimension	Dimensions and ordering data														
YSRF															
For size	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight	Part No.	Туре			
[mm]										[g]					
8	16	5.5	10	5.5	10.2	16	25	38	2	50	11681	YSRF-8			
12	25	6.8	11	6.6	15.2	25	36	50	2	175	11682	YSRF-12			
16	30	9	15	9	20.2	30	45	63	2	300	11683	YSRF-16			
20	36	11	18	11	24.2	36	56	78	2	535	11684	YSRF-20			
25	45	13	20	13.5	30.2	45	63	86	2	895	11685	YSRF-25			
32	55	15	24	15.5	37.2	55	80	108	2	1,730	11686	YSRF-32			

1) Corrosion resistance class 2 according to Festo standard 940 070

Components requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents

YSRF-C												
For size [mm]	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight [g]	Part No.	Туре
8	20	5.5	10	5.5	12.2	20	28	41	2	90	34575	YSRF-8-C
12	25	6.8	11	6.6	16.2	25	36	50	2	180	34576	YSRF-12-C
16	32	9	15	9	22.2	32	45	63	2	330	34577	YSRF-16-C
20	40	11	18	11	26.2	40	56	78	2	700	34578	YSRF-20-C


1) Corrosion resistance class 2 according to Festo standard 940 070

Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents

FESTO

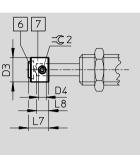
Mounting flange YSRF-S-C

Material: Aluminium, steel Free of copper, PTFE and silicone

Possible combinations		
Cushioning components	YSR-C	YSRW
Mounting flange		
YSRF-S-8-C		
YSRF-S-12-C		
YSRF-S-16-C		
YSRF-S-20-C		

Dimension	is and oro	dering data												
For size	B1	D1	D2	H1	H2	H3	H4	L1	L2	L3	T1	Weight	Part No.	Туре
[mm]			Ø									[g]		
	20	M12v1		25	25	0.5	1(22	4.5	4	2		24570	
8	20	M12x1	5.5	35	25	9.5	16	32	45	4	2	12	34579	YSRF-S-8-C
12	25	M16x1	6.6	42	32	12.5	20	36	50	3	4	130	34580	YSRF-S-12-C
16	30	M22x1.5	9	48	38	16.5	22	45	60	8	4	180	34581	YSRF-S-16-C
20	30	M26x1.5	11	52	42	19	23.5	56	80	11.5	4	250	34582	YSRF-S-20-C

Note


Inductive sensors for position sensing → 45

FESTO

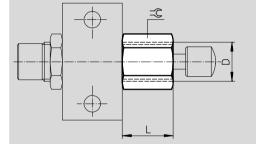
Buffer YSRP

Material: Steel, polyurethane

6 Polyurethane insert

7 Buffer

Dimensions and ordering data


Dimension	is and ordering up	11.0							
For size	D3	D4	L7	L8	=© 2	CRC ¹⁾	Weight	Part No.	Туре
[mm]							[g]		
8	8	M2	6,7	4	0,9	2	4	539638	YSRP-8
12	12	M4	10	6	2	2	7	11133	YSRP-12
16	16	M5	13.5	8	2.5	2	15	11134	YSRP-16
20	20	M6	17	10	3	2	27	11135	YSRP-20
25	25	M8	20.5	12	4	2	52	11136	YSRP-25
32	32	M8	26	15	4	2	110	11137	YSRP-32

1) Corrosion resistance class 2 according to Festo standard 940 070 Components requiring moderate corrosion resistance. Externally visible parts with primarily decorative surface requirements which are in direct contact with a surrounding industrial atmosphere or media such as cooling or lubricating agents

Stop limiter YSRA-C

Material: Steel



Dimension	is and ordering data				
For size	D	L	D=	Weight	Part No. Type
[mm]				[g]	
7	M10x1	14.5	13	12	150932 YSRA-7-C
8	M12x1	18	15	28	150933 YSRA-8-C
12	M16x1	24.5	19	48	150934 YSRA-12-C

Reducing sleeve DAYH

Material: Stainless steel

To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve.

Built-in shock absorber	Part No.	Reducing sleeve	Part No.	Next smallest shock absorber
YSRC				
YSR-5-5-C	1165476	DAYH-4	540060	YSR-4-4-C
DYSC				
DYSC-8-8-Y1F	1165484	DAYH-7	548012	DYSC-7-5-Y1F
DYSC-7-5-Y1F	1165480	DAYH-5	548011	DYSC-5-5-Y1F
DYSW				
DYSW-12-20-Y1F	1165491	DAYH-10	548074	DYSW-10-17-Y1F
DYSW-10-17-Y1F	1165488	DAYH-8	548073	DYSW-8-14-Y1F
DYSW-8-14-Y1F	1165484	DAYH-7	548072	DYSW-7-10-Y1F
DYSW-7-10-Y1F	1165480	DAYH-5	548071	DYSW-5-8-Y1F
DYSW-5-8-Y1F	1165476	DAYH-4	548070	DYSW-4-6-Y1F

Ordering data	a – Proximity sensors for T-slot, magneto-	resistive				Technical data 🗲 Internet: sm
	Type of mounting	Switch output	Electrical connection	Cable length [m]	Part No.	Туре
N/O contact				[]		
	Insertable in the slot from above, flush	PNP	Cable, 3-wire	2.5	574335	SMT-8M-A-PS-24V-E-2,5-OE
	with cylinder profile, short design		Plug M8x1, 3-pin	0.3	574334	SMT-8M-A-PS-24V-E-0,3-M8D
ÿ⁄			Plug M12x1, 3-pin	0.3	574337	SMT-8M-A-PS-24V-E-0,3-M12
		NPN	Cable, 3-wire	2.5	574338	SMT-8M-A-NS-24V-E-2,5-OE
			Plug M8x1, 3-pin	0.3	574339	SMT-8M-A-NS-24V-E-0,3-M8D
N/C contact						
A BEAL	Insertable in the slot from above, flush with cylinder profile, short design	PNP	Cable, 3-wire	7.5	574340	SMT-8M-A-PO-24V-E-7,5-OE

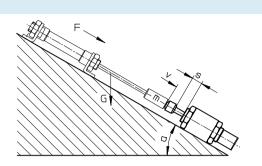
Ordering data	- Proximity sensors for T-slot, magnetic	reed				Technical data 🗲 Internet: sme
	Type of mounting	Switch	witch Electrical connection Cable lengt		Part No.	Туре
		output		[m]		
N/O contact						
	Insertable in the slot from above, flush	Contacting	Cable, 3-wire	2.5	543862	SME-8M-DS-24V-K-2,5-OE
CT B A	with cylinder profile		Plug M8x1, 3-pin	0.3	543861	SME-8M-DS-24V-K-0,3-M8D
	Insertable in the slot lengthwise, flush	Contacting	Cable, 3-wire	2.5	150855	SME-8-K-LED-24
	with the cylinder profile		Plug M8x1, 3-pin	0.3	150857	SME-8-S-LED-24
N/C contact						
	Insertable in the slot lengthwise, flush with the cylinder profile	Contacting	Cable, 3-wire	7.5	160251	SME-8-O-K-LED-24

Ordering data	– Inductive sensors	M8, for mounting flange	YSRF-S-C				Technical data 🗲 Internet: sien
	Electrical connection	ı	Switch	LED	Cable length	Part No.	Туре
	Cable	M8 plug	output		[m]		
NO contact							
	3 wires	-	PNP		2.5	150386	SIEN-M8B-PS-K-L
and the second s	-	3-pin	PNP		-	150387	SIEN-M8B-PS-S-L
NC contact							
and the second s	3 wires	-	PNP		2.5	150390	SIEN-M8B-PO-K-L
and the second se	-	3-pin	PNP		-	150391	SIEN-M8B-PO-S-L

Ordering data	- Connecting cables				Technical data 🗲 Internet: nebu
	Electrical connection, left	Electrical connection, right	Cable length [m]	Part No.	Туре
	Straight socket, M8x1, 3-pin	Cable, open end, 3-wire	2.5	541333	NEBU-M8G3-K-2.5-LE3
() and the second se			5	541334	NEBU-M8G3-K-5-LE3
	Angled socket, M8x1, 3-pin	Cable, open end, 3-wire	2.5	541338	NEBU-M8W3-K-2.5-LE3
Cite Cite			5	541341	NEBU-M8W3-K-5-LE3

Calculation tool for cushioning components

This selection aid helps you find the right shock absorber for every application. When you are choosing a shock absorber, we recommend that you proceed as follows:	 Determine the following values, effective at the time of impact: Force (A) Equivalent mass m_{equiv} Impact velocity (v) 	 Select a shock absorber from the graphs on the following pages. Check your selection on the basis of its maximum cushioning energy (W_{max.}) 	- ↓ - Note Sizing software Shock absorber selection →www.festo.com
When you are choosing a shock absorber for your application, ensure that the following values are not exceeded:	 Permissible energy load per stroke: W_{min.} = 25% W_{max.} = 100% Recommended energy load per stroke: W_{opt.} = 50% 100 % 	 Max. energy absorption per hour Max. residual energy Max. stop force in end position 	
The (angular) velocity required in the formulae is the velocity at the time of the impact on the shock absorber. This depends on the dynamic characteristics of the drive component and is thus difficult to determine. It is better to determine the mean velocity ($v_m = s/t$ or $\omega_m = \phi/t$).	In order to prevent damage to the drive concerned, calculations should in the interests of safety be based on the following values: $v = 1.25 \dots 2 v_m$ $\omega = 1.25 \dots 2 \omega_m$ Guide values for linear motions: Factor 2 with strokes > 50 mm, factor 1.5 with strokes > 50 mm and < 100 mm, factor 1.25 with strokes > 100 mm.	The fact that the (angular) velocity appears in the calculation as a squared value means that the expected error becomes considerably larger. The calculation can thus be regarded only as an approximation. The safety factor does, however, ensure that the selected shock absorber is not too small.	
The following formulae are required for the calculation:	$\begin{split} A &= F + G \\ A &= F + m \times g \times \sin \alpha \\ W_{total} &= \frac{1}{2} \times m \times v^2 + A \times s < V \\ W_{h} &= W_{total} \times Stroke \div Hours < W_{h} \end{split}$		
The following applies additionally for rotary motions:	$m_{equiv.} = \frac{J}{R^2}$ $v = \omega \times R$ $A = \frac{M}{R} + m \times g \times \sin \alpha \times \frac{a}{R}$		
The following abbreviations are used:	$ \begin{array}{ll} A &= Additional force = F + G \left[N \right] \\ F &= Cylinder force minus \\ frictional force \left[N \right] \\ G &= Force due to weight \\ &= m \times g \times \sin \alpha \end{array} \\ \begin{array}{ll} Special cases: \\ \alpha &= 0^\circ \text{: Horizontal motion} \\ G = 0 \\ \alpha &= 90^\circ \text{: Horizontal motion} \\ G = m \times g \\ \alpha &= 90^\circ \text{: Upward motion:} \\ G = -m \times g \end{array} $	 v = Impact velocity [m/s] m_{equiv.}= Equivalent mass [kg] g = Acceleration due to gravity 9.81 [m/s²] s = Shock absorber stroke [m] α = Impact angle [°] W_{total}= Cushioning work/stroke [J] W_h = Cushioning work/hour [J] 	 J = Mass moment of inertia [kg x m²] R = Distance between mass pivot point and shock absorber [m] ω = Angular velocity [rad/s] M = Drive torque [Nm] a = Distance between centre of gravity of mass and pivot point


Calculation tool for cushioning components

FESTO

Technical data

Sizing example for linear motion

This example illustrates the procedure for the selection of a shock absorber for the application shown in the adjacent drawing:

In the process of selecting shock absorbers on the basis of the graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (m_{equiv}) and the impact velocity (v). The curves move to the left as the additional force increases.

Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the

graphs show (continuous line), possible choices are the shock absorbers DYSR-25-40 and YSR-25-40-C. We must now determine whether the maximum permissible values for cushioning work (W_{max}.) and cushioning work per hour (W_{hmax}.) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs). Experiment: $W_{total} = \frac{1}{2} \times m \times v^2 + A \times s$ $= (1/2 \times 50 \times 1.5^2 + 537 \times 0.04) Nm = 78 J$

W_h = W_{total} x strokes/h = 78 Nm x 1,800 = 140,000 J For the above application, both shock absorbers are suitable. Further selection criteria are adjustment facilities and size.

= 50 kg

= 1.5 m/s

= 190 N

 $(\emptyset$ 20 mm with p = 6 bar, 1,800 strokes per hour)

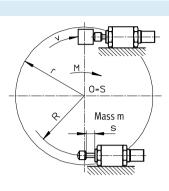
m

v

α = 45°

F

Result		
	DYSR-25-40	YSR-25-40-C
W _{total}	78 J	78 J
W _h	140,000 J	140,000 J
W _{max} . ¹⁾	160 J > W _{total}	160 J > W _{total}
W _{hmax} .	220,000 > W _{max.}	150,000 > W _{max.}


1) The degree of utilisation is 49% in both cases.

Calculation tool for cushioning components

Technical data

Sizing example for rotary motion

Example for rotary motion: $m_{equiv} = J/R^2 = 8 \text{ kg}$ $v = \omega x R$ A = M/R = 40 N

In the process of selecting shock absorbers on the basis of graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (m_{equiv}) and the impact velocity (v). The curves move to the left as the additional force increases. Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the graphs show (dotted line), possible choices are the shock absorbers DYSR-16-20 and YSR-16-20-C. We must now determine whether the maximum permissible values for cushioning work (W_{max}.) and cushioning work per hour (W_{hmax}.) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs).

Note: The impact angle must be noted with rotary applications.

 $\tan\alpha = \frac{s}{R}$

s = Cushioning stroke

Experi	ment:	
Wtotal	$= \frac{1}{2} \times m$	$x v^2 + A$

Vtotal	$= \frac{1}{2} \times m \times V^{2} + A \times S$
	= (1/2 x 8 x 2 ² +
	40 x 0.02) J = 17 J

 W_h = $W_{total} x \text{ strokes/h}$ = 17 J x 900 = 15,300 J

900 strokes per hour

For the above application, both shock absorbers are suitable. Further selection criteria are adjustment facilities and size.

FESTO

Result			
	DYSR-16-20 ³⁾	YSR-16-20-C	
W _{total}	17 J	17 J	
W _h	15,300 J	15,300 J	
W _{max} .	$32 \text{ J} > \text{W}_{\text{total}}^{1)}$	$30 \text{ J} > \text{W}_{\text{total}}^{2)}$	
W _{hmax.}	100,000 > W _{max.}	64,000 > W _{max.}	

The degree of utilisation is 53%.
 The degree of utilisation is 57%.

The degree of utilisati
 Use without buffer.